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The physical basis for the dynamics of migration of DNA larger thanze, the DNA migrates with the depletion layer as a
oligomers through polyacrylamide gels is a long-standing and open “dressed” macromolecule through a fluctuating inhomogeneous
question in physical and biophysical chemistry. In particular, no network. By computing the fraction of volume accessible to the
analytically tractable model exists that can describe quantitatively DNA and relating this to the workyy of inserting the DNA into
the migration patterns of intrinsically curved DNA sequences in the entangled matrix, one finds that the extra contribution to the
gels. To advance our understanding of the physical basis of thefriction is given by expt-wgyksT), wherekg is the Boltzmann
dynamics of gel migration of DNA oligomers on the one hand and constant and is the absolute temperature. The work of depletion
DNA bending on the other hand, we studied the gel migration of can be expressed in terms of the dimensionless détiowhered
a DNA ladder built from phased repeats of the adenine-tract (A- is the diameter of the DNA?
tract) containing sequence Asind the effect of the organic solvent To obtain the free solution mobility of the DNA, one needs to
2-methyl-2,4-pentanediol (MPD) on its migration. Previous studies account for several forces that act on the macromoleeulerst,
observed that MPD reduced the anomaly in gel migration of there are forces acting on the monomer unit of the polyelectrolyte
A-tracts, interpreted as indicating a straightening of the helix by chain. The sum of the forces due to chain connectivity acting on
MPD 23 the monomer unit plus that due to electrostatic interactions between

We have constructed a quantitative predictive model for the the monomer unit and all other monomers balance the forces due
electrophoretic migration of intrinsically curved DNA fragments to friction on a monomer unit and that due to electric force acting
through polyacrylamide gels. Imagine a polyelectrolyte chain such on the monomer unit. Second, there are the forces that are acting
as DNA threading its way through the pores of the gel. As the on the solvent molecules. Here, the frictional forces acting on the
DNA threads its way through the pores of the gel, the tangential solvent plus that due to the pressure acting on the solvent balance
force on the macromolecule due to the external electric field the force due to the counterions in solution. Finally, the DNA
balances the drag forces under the steady-state condition. Themotion is coupled to that of the solvent by employing the
tangential force on a DNA of contour lengthdue to a constant appropriate boundary condition. An approximate solution to these
external electric fielcE is proportional to the effective charge of equations leads to a relation for the free solution mobility that
the DNA and the end-to-end distance along the direction of the includes asymmetric field effects. This relation for the free solution
external field* By Stokes law, the drag force on the DNA is the mobility has been tested for oligomeric DNJA?11
product of the mean velocity of the DNA and the translation Assume that the intrinsically curved polyelectrolyte chain has
frictional coefficient. Under steady-state conditions, the forces coplanar bends that separate- 1 segments, each of lengthBy
balance and one finds that the gel electrophoretic mobility is the a synthesis of the steps discussed above, we find that the gel
product of the free solution mobility,, of the polyion and the electrophoretic mobility of the DNA is approximately given by
ratio of the end-to-end distance of the molecule divided by its
contour length. N

In a remarkable and insightful work, Olson and co-workers have U = C(e/n)e"™ %" Zeﬂ(b'(rl — N )[(2P/L{1
argued that the retardation characteristics of intrinsically curved =
DNA fragments in a gel is governed not only by its average size _op
or special configuration, due to sequence-dependent effects, but (P/LY Z(l —e )~
also by the amplitude of local structural fluctuatiér®n the basis m=

) - . n-1 n+l p-1 p—1
of this work, we assume that an additional source of friction (—s/P) —S/Pon2y 11/
experienced by the macromolecule through the pores of the gel is Z COS(Z@(, u € )1 —e ")) 2] (1)
due to fluctuations in its structure and that these fluctuations are a L P2 =m o pEm

consequence of.the rearrangements of .the polyacrylamide segmentq}vhereo is a constant andy are respectively the dielectric constant
density in a region (termed the depletion layer) around the DNA. and viscosity of the solventd and P, are respectively the
Furthermore, fluctuations of the segment density lead to an superhelical diameter and the persistence length of the DN8:
inhomogeneity in the polymer network. Létbe the correlation the bend angleb is the charge spacing: is the Debye screenin,g
length that is a measure of the inhomogeneity. We assumé that parameter; andl is the length of the DN,A fragment in base pairs.

IS muc.h Iarger than the size of the DNA. "7 the nondrgiping The quantity within the square brackets in eq 1 is the end-to-end
approximation, the time scale for the decay of inhomogeneities in distance of the DNA and was obtained as follows. Let a single

:Ee SEI ;st.muTh I::?rg\%r:h?r;]_the time s_caﬁeforfreo_rganlzaltlon of h intrinsic bend® be located at a distancefrom one end of the
€ depietion layer. atthis means Is that for time scales muc DNA. If the backbone is viewed as a wormlike chain, then the

- : mean-squared end-to-end distance has contributions from orientation
*Egg?c;1rl10(r_l,bllege. correlation between unit tangents from segments located on the
§ Harvard University. same side and from opposite sides of the b&nhds

n+1 n+1

Zcosﬁ)(l —e P2 4

m=
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Figure 1. Electrophoretic mobility J) of Ast as a function of DNA length
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Figure 2. Electrophoretic mobility ) of Ast21 multimers as a function

0o 4

in base pairs, in the absence of MPD. Experimental values (squares) areof % MPD (symbols) is compared with the theoretical predictions (lines).

compared to predicted values at correlation lengths of 89 A (solid line)
and 93 A (dotted line), respectively. Error bars represent the standard
deviation of three independent experiments.

0= [ ds [} dsCi(s)-i(s)
2/ ds [~ dsi(9-iE)T+ [ ds [ dstie)-iE)0(2)

Wheref(s) and f(s’) are respectively the unit tangent vectorsat
ands. Since, segments of DNA on both sides of the intrinsic bend

See the inset for details.

poor solvent for sufficiently high MPD. To put it differently, in
this system, A-tractssolvent contacts are less favored compared
with A-tract—A-tract and solventsolvent contacts.

In our model, several delicate factors govern the migration
patterns of DNA fragments in the presence of MPD. First, MPD
lowers the dielectric constant, which in turn affects the Bejrrum
length, the Debye screening length, the screening of the hydrody-
namic interactions, the electrostatic persistence length, the amplitude

behqve as straight polyions, the first and the third terms can be of thermal fluctuations, the counter condensation, and the electro-
readily evaluated. The second term, however, depends on thegiatic stability of DNA. Second, MPD increases the viscosity and,

magnitude of the peng angteand can be analytically carried out
using the identityfi(s)-t(S)J = cos@) exp(—|s — g|/P).12
The variation of viscosity of water with % MPD has been

hence, the frictional coefficient. The discrepancy between experi-
mental and theoretical prediction of Ast105 is less than significant
if one notes that bending by different A-tract-containing sequences

obtained experimentally. The dielectric constant of water decreases. 5, change by 10%and that the results can be accounted for in

with increase of % MPD? The ionic strength of TBE buffer is
obtained from a self-consistent solution of the Hendeddassel-

the model by a modest increase in the persistence length.
In summary, the longstanding problem of a quantitative predictive

bach equation and the Davies equation and is found to be 0.02565de| for the absolute electrophoretic mobility of intrinsically

M. The Bjerrum length of water at 28 is 7.1 A. The persistence
length for A-tract DNA is taken to be 530 A, whereas for the

curved DNA fragments in polyacrylamide gels has been essentially
solved.

sequence investigated here, namely, Ast, the superhelical radius is

around 61 Al4 The charge spacing is taken to be 3.4 A. The
effective charge of the DNA fragment is obtained from Manning’s
seminal work on counterion condensatién.

The predictions of the gel electrophoretic mobility of the Ast
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sequence as a function of DNA length in base pairs, in the absenceReferences

of MPD, are shown in Figure 1. The predictions are in good

agreement with the experimental data. Since the dependence of the

correlation length with % MPD is not known, we varig¢dvith %
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function of the MPD concentration (Figure 2).
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